Location
San Diego, California
Presentation Date
26 May 2010, 4:45 pm - 6:45 pm
Abstract
During a strong earthquake, passive earth pressure can provide resistance to excessive displacements along bridge abutments and pile caps. To account for this contribution, the force-displacement relationship is required, in addition to the peak resistance value. Experiments were performed at the University of California, San Diego to record the passive earth pressure force-displacement relationship behind a 1.7 meter tall vertical wall section. The experimental configuration of the soil container and wall system is described first. Backfill consisting of dense well-graded silty sand was placed in the soil container which measured 5.6 meters long, 2.9 meters wide and 2.15 meters deep. A finite element (FE) model is calibrated next, on the basis of this experimental response. FE analysis is then employed to compute the backfill resistance considering a range of representative backfill soils and depths. Results from these simulations help to illustrate the significant dependence on soil type and supported backfill depth on the passive force-displacement response. Calibrated hyperbolic model parameters are provided to represent the simulated passive resistance for use in practical applications.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
5th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics
Publisher
Missouri University of Science and Technology
Document Version
Final Version
Rights
© 2010 Missouri University of Science and Technology, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Wilson, Patrick and Elgamal, Ahmed, "Passive Earth Pressure Force-Displacement Relationships" (2010). International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 20.
https://scholarsmine.mst.edu/icrageesd/05icrageesd/session01b/20
Included in
Passive Earth Pressure Force-Displacement Relationships
San Diego, California
During a strong earthquake, passive earth pressure can provide resistance to excessive displacements along bridge abutments and pile caps. To account for this contribution, the force-displacement relationship is required, in addition to the peak resistance value. Experiments were performed at the University of California, San Diego to record the passive earth pressure force-displacement relationship behind a 1.7 meter tall vertical wall section. The experimental configuration of the soil container and wall system is described first. Backfill consisting of dense well-graded silty sand was placed in the soil container which measured 5.6 meters long, 2.9 meters wide and 2.15 meters deep. A finite element (FE) model is calibrated next, on the basis of this experimental response. FE analysis is then employed to compute the backfill resistance considering a range of representative backfill soils and depths. Results from these simulations help to illustrate the significant dependence on soil type and supported backfill depth on the passive force-displacement response. Calibrated hyperbolic model parameters are provided to represent the simulated passive resistance for use in practical applications.