Location
San Diego, California
Presentation Date
26 May 2010, 4:45 pm - 6:45 pm
Abstract
An ultrasonic p-wave reflection imaging system is used to non-invasively image submerged soil models with embedded anomalies and complex geometric layer contacts. The ultrasonic transducers emit compressive waves into water that subsequently transmit into the underlying soil, and measurements of the reflections are used to construct the images. Properties of the transducers and data acquisition hardware and software are explained. A soil model consisting of embedded high- and low-impedance anomalies, dipping soil layer contacts, and an undulating concrete base layer was imaged using 500 kHz transducers. The geometric features of the model are clearly visible in the images.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
5th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics
Publisher
Missouri University of Science and Technology
Document Version
Final Version
Rights
© 2010 Missouri University of Science and Technology, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Coe, Joseph and Brandenberg, Scott J., "P-Wave Reflection Imaging of Laboratory Soil Models" (2010). International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 18.
https://scholarsmine.mst.edu/icrageesd/05icrageesd/session01b/18
Included in
P-Wave Reflection Imaging of Laboratory Soil Models
San Diego, California
An ultrasonic p-wave reflection imaging system is used to non-invasively image submerged soil models with embedded anomalies and complex geometric layer contacts. The ultrasonic transducers emit compressive waves into water that subsequently transmit into the underlying soil, and measurements of the reflections are used to construct the images. Properties of the transducers and data acquisition hardware and software are explained. A soil model consisting of embedded high- and low-impedance anomalies, dipping soil layer contacts, and an undulating concrete base layer was imaged using 500 kHz transducers. The geometric features of the model are clearly visible in the images.