Abstract
Particle Swarm Optimization (PSO) has been demonstrated to be a useful technique in target search applications such as Collective Robotic Search (CRS). A group of unmanned mobile robots are able to locate a specified target in a high risk environment with extreme efficiency when driven by an optimized PSO algorithm. This paper presents an algorithm for obstacle avoidance with the PSO approach applied to navigate robots in collective search applications. Obstacles represented by basic geometric shapes to simulate perilous ground terrain are introduced to the search area. Results are presented to show that PSO algorithm based CRS is able to locate targets avoiding hazardous pathways.
Recommended Citation
L. L. Smith et al., "Obstacle Avoidance in Collective Robotic Search Using Particle Swarm Optimization," Proceedings of the IEEE Swarm Intelligence Symposium, 2006, Institute of Electrical and Electronics Engineers (IEEE), May 2006.
Meeting Name
IEEE Swarm Intelligence Symposium, 2006
Department(s)
Electrical and Computer Engineering
Document Type
Article - Conference proceedings
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2006 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
01 May 2006