Abstract

We propose a method of predicting intrauterine pressure (IUP) from external electrohysterograms (EHG) using a causal FIR Wiener filter. IUP and 8-channel EHG data were collected simultaneously from 14 laboring patients at term, and prediction models were trained and tested using 10-min windows for each patient and channel. RMS prediction error varied between 5-14 mmHg across all patients. We performed a 4-way analysis of variance on the RMS error, which varied across patients, channels, time (test window) and model (train window). The patient-channel interaction was the most significant factor while channel alone was not significant, indicating that different channels produced significantly different RMS errors depending on the patient. The channel-time factor was significant due to single-channel bursty noise, while time was a significant factor due to multichannel bursty noise. The time-model interaction was not significant, supporting the assumption that the random process generating the IUP and EHG signals was stationary. The results demonstrate the capabilities of optimal linear filter in predicting IUP from external EHG and offer insight into the factors that affect prediction error of IUP from multichannel EHG recordings. © 2006 IEEE.

Department(s)

Electrical and Computer Engineering

Comments

National Science Foundation, Grant DMI-0239060

Keywords and Phrases

Electrohysterography; Intrauterine pressure catheter; Wiener filter prediction

International Standard Serial Number (ISSN)

0018-9294

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2025 Institute of Electrical and Electronics Engineers, All rights reserved.

Publication Date

01 Oct 2006

PubMed ID

17019862

Share

 
COinS