Charge Optimized Many-Body (COMB) Potential for Dynamical Simulation of Ni-Al Phases
Abstract
An interatomic potential for the Ni-Al system is presented within the third-generation charge optimized many-body (COMB3) formalism. The potential has been optimized for Ni3Al, or the γ' phase in Ni-based superalloys. The formation energies predicted for other Ni-Al phases are in reasonable agreement with first-principles results. The potential further predicts good mechanical properties for Ni3Al, which includes the values of the complex stacking fault (CSF) and the anti-phase boundary (APB) energies for the (1 1 1) and (1 0 0) planes. It is also used to investigate dislocation propagation across the Ni3Al (1 1 0)-Ni (1 1 0) interface, and the results are consistent with simulation results reported in the literature. The potential is further used in combination with a recent COMB3 potential for Al2O3 to investigate the Ni3Al (1 1 1)-Al2O3 (0 0 01) interface, which has not been modeled previously at the classical atomistic level due to the lack of a reactive potential to describe both Ni3Al and Al2O3 as well as interactions between them. The calculated work of adhesion for this interface is predicted to be 1.85 J m-2, which is in agreement with available experimental data. The predicted interlayer distance is further consistent with the available first-principles results for Ni (1 1 1)-Al2O3 (0 0 0 1).
Recommended Citation
A. Kumar et al., "Charge Optimized Many-Body (COMB) Potential for Dynamical Simulation of Ni-Al Phases," Journal of Physics: Condensed Matter, vol. 27, no. 33, Institute of Physics - IOP Publishing, Aug 2015.
The definitive version is available at https://doi.org/10.1088/0953-8984/27/33/336302
Department(s)
Physics
Research Center/Lab(s)
Center for High Performance Computing Research
Keywords and Phrases
Interfaces (Materials); Molecular Dynamics; Nickel; Antiphase Boundaries; Complex Stacking Faults; Dislocation Propagation; Dynamical Simulation; Interatomic Potential; Many Body; Ni-Based Superalloys; Reactive Potentials; Aluminum; Charge Optimized Many-Body (COMB); Interatomic Potential; Interface; Molecular Dynamics (MD); Ni; Ni3Al; Ni3Al2O3
International Standard Serial Number (ISSN)
0953-8984
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2015 Institute of Physics - IOP Publishing, All rights reserved.
Publication Date
01 Aug 2015
Comments
This article is corrected by Corrigendum: Charge Optimized Many-Body (COMB) Potential for Dynamical Simulation of Ni-Al Phases".