An ab initio Investigation of the Effect of Alloying Elements on the Elastic Properties and Magnetic Behavior of Ni₃Al
Abstract
First principles density functional theory calculations were performed on pure and doped Ni3Al. The dopants investigated were Cr, Zr, La and Ce at concentrations of 3.13, 6.25 and 9.38 at.%, and B was considered at concentrations of 3.03, 5.88 and 8.57 at.%. The defect formation energies, doping site preferences, and elastic properties of pure and doped Ni3Al were determined and compared to published theoretical and experimental results. The magnetic properties of Ni3Al and, where appropriate, the dopants, were always taken into account, as the elastic constants predicted from spin-polarized and non-spin-polarized calculations were significantly different. The results were successfully correlated to the electronic structure through the electronic density using Miedema's established model (Miedema et al., 1973). The calculations revealed that Cr doping increases the bulk modulus of Ni3Al and that all the other dopants considered decrease it.
Recommended Citation
A. Kumar et al., "An ab initio Investigation of the Effect of Alloying Elements on the Elastic Properties and Magnetic Behavior of Ni₃Al," Computational Materials Science, vol. 101, pp. 39 - 46, Elsevier, Apr 2015.
The definitive version is available at https://doi.org/10.1016/j.commatsci.2015.01.007
Department(s)
Physics
Research Center/Lab(s)
Center for High Performance Computing Research
Keywords and Phrases
Alloying Elements; Calculations; Defect Density; Defects; Density Functional Theory; Doping (Additives); Elastic Constants; Elastic Moduli; Elasticity; Electronic Structure; Nickel; Quantum Chemistry; Spin Polarization; Ab Initio Investigation; Defect Formation Energies; Elastic Properties; Electronic Density; First-Principles Density Functional Theory; Magnetic Behavior; Ni-Based Superalloys; Spin-Polarized; Aluminum; Bulk Modulus; Defect Formation Energy; Dopants; Ni3Al
International Standard Serial Number (ISSN)
0927-0256
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2015 Elsevier, All rights reserved.
Publication Date
01 Apr 2015