Abstract
Approximated functional renormalization group (FRG) equations lead to regulator-dependent β-functions, in analogy to the scheme-dependence of the perturbative renormalization group (pRG) approach. A scheme transformation redefines the couplings to relate the β-functions of the FRG method with an arbitrary regulator function to the pRG ones obtained in a given scheme. Here, we consider a periodic sine-Gordon scalar field theory in d = 2 dimensions and show that the relation of the FRG and pRG approaches is intricate. Although both the FRG and the pRG methods are known to be sufficient to obtain the critical frequency β c 2 = 8 π of the model independently of the choice of the regulator and the renormalization scheme, we show that one has to go beyond the standard pRG method (e.g. using an auxiliary mass term) or the Coulomb-gas representation in order to obtain the β-function of the wave function renormalization. This aspect makes the scheme transformation non-trivial. Comparing flow equations of the two-dimensional sine-Gordon theory without any scheme-transformation, i.e. redefinition of couplings, we find that the auxiliary mass pRG β-functions of the minimal subtraction scheme can be recovered within the FRG approach with the choice of the power-law regulator with b = 2, which therefore constitutes a preferred choice for the comparison of FRG and pRG flows.
Recommended Citation
S. Hariharakrishnan et al., "Perturbative Versus Non-Perturbative Renormalization," Journal of Physics G: Nuclear and Particle Physics, vol. 51, no. 8, article no. 085005, IOP Publishing, Aug 2024.
The definitive version is available at https://doi.org/10.1088/1361-6471/ad5744
Department(s)
Physics
Publication Status
Open Access
Keywords and Phrases
functional renormalization group; perturbative renormalization group; renormalization; scheme-transformation; sine-Gordon model
International Standard Serial Number (ISSN)
1361-6471; 0954-3899
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2024 IOP Publishing, All rights reserved.
Publication Date
01 Aug 2024
Comments
National Science Foundation, Grant PHY–2110294