Abstract
The end-to-end efficiency of radio-frequency (RF)-powered wireless communication networks (WPCNs) in post-disaster underground mine environments can be enhanced through adaptive beamforming. The primary challenges in such scenarios include (i) identifying the most energy-constrained nodes, i.e., nodes with the lowest residual energy to prevent the loss of tracking and localization functionality; (ii) avoiding reliance on the computationally intensive channel state information (CSI) acquisition process; and (iii) ensuring long-range RF wireless power transfer (LoRa-RFWPT). To address these issues, this paper introduces an adaptive and safety-aware deep reinforcement learning (DRL) framework for energy beamforming in LoRa-enabled underground disaster networks. Specifically, we develop a Safe Adaptive Deep Q-Network (SADQN) that incorporates residual energy awareness to enhance energy harvesting under mobility, while also formulating a SADQN approach with dual-variable updates to mitigate constraint violations associated with fairness, minimum energy thresholds, duty cycle, and uplink utilization. A mathematical model is proposed to capture the dynamics of post-disaster underground mine environments, and the problem is formulated as a constrained Markov decision process (CMDP). To address the inherent NP hardness of this constrained reinforcement learning (CRL) formulation, we employ a Lagrangian relaxation technique to reduce complexity and derive near-optimal solutions. Comprehensive simulation results demonstrate that SADQN significantly outperforms all baseline algorithms: increasing cumulative harvested energy by approximately 11% versus DQN, 15% versus Safe-DQN, and 40% versus PSO, and achieving substantial gains over random beamforming and non-beamforming approaches. The proposed SADQN framework maintains fairness indices above 0.90, converges 27% faster than Safe-DQN and 43% faster than standard DQN in terms of episodes, and demonstrates superior stability, with 33% lower performance variance than Safe-DQN and 66% lower than DQN after convergence, making it particularly suitable for safety-critical underground mining disaster scenarios where reliable energy delivery and operational stability are paramount.
Recommended Citation
H. K. Anabi et al., "SADQN-Based Residual Energy-Aware Beamforming for LoRa-Enabled RF Energy Harvesting for Disaster-Tolerant Underground Mining Networks," Sensors, vol. 26, no. 2, article no. 730, MDPI, Jan 2026.
The definitive version is available at https://doi.org/10.3390/s26020730
Department(s)
Mining Engineering
Second Department
Computer Science
Publication Status
Open Access
Keywords and Phrases
adaptive beamforming; energy beamforming (EB); energy harvesting (EH); Long Range (LoRa); reinforcement learning (RL); Safe Deep Q-Network (Safe-DQN); wireless power transfer (WPT)
International Standard Serial Number (ISSN)
1424-8220
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2026 The Authors, All rights reserved.
Creative Commons Licensing

This work is licensed under a Creative Commons Attribution 4.0 License.
Publication Date
01 Jan 2026
PubMed ID
41600524

Comments
Centers for Disease Control and Prevention, Grant None