Abstract

Diesel particulate matter (DPM) is considered to be carcinogenic after prolonged exposure. With more diesel-powered equipment used in underground mines, miners' exposure to DPM has become an increasing concern. This paper used computational fluid dynamics method to study the DPM dispersion in a dead-end entry with loading operation. The effects of different push–pull ventilation systems on DPM distribution were evaluated to improve the working conditions for underground miners. The four push–pull systems considered include: long push and short pull tubing; short push and long pull tubing, long push and curved pull tubing, and short push and curved pull tubing. A species transport model with buoyancy effect was used to examine the DPM dispersion pattern with unsteady state analysis. During the 200 s of loading operation, high DPM levels were identified in the face and dead-end entry regions. This study can be used for mining engineer as guidance to design and setup local ventilation, select DPM control strategies and for DPM annual training for underground miners.

Department(s)

Mining Engineering

Publication Status

Full / Open Access

Comments

National Institute for Occupational Safety and Health, Grant 1 R25 OH008319

Keywords and Phrases

Computational fluid dynamics; Diesel particulate matter; Push–pull system; Underground condition; Ventilation

International Standard Serial Number (ISSN)

2095-8293

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2024 The Authors, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Publication Date

01 Sep 2015

Share

 
COinS