Abstract
The Accuracy, or Even the Validity, of the Schrage Relationships Expressing the Rate of Evaporation and Condensation in Terms of Local Interfacial Thermodynamics Properties and the Mass Accommodation Coefficient is a Subject of Significant Discussion. in This Work, We Carry Out Molecular Dynamics (MD) Simulations of Evaporation and Condensation of Fluid Ar in a Nanochannel. by Adjusting the Temperature Difference, ΔT, between the Evaporating and Condensing Surfaces, We Control the Steady-State Evaporation and Condensation Fluxes (JMD). We Find that Across a Wide ΔT Range Studied, JMD is Always in Excellent Agreement with the Prediction from the Exact Schrage Relationships. Furthermore, If the Temperature Difference between the Two Liquid Surfaces in the Nanochannel is Less Than ∼20% of the Average Absolute Temperature, We Find that Both Energy and Mass Fluxes at the Interface Are Proportional to ΔT. Our Analysis Indicates that in the Case of Steady-State Evaporation and Condensation Processes, the Exact Schrage Relationships Satisfy the Conservation of Mass, Momentum and Energy, and Provides Accurate Predictions of the Rates of the Associated Processes.
Recommended Citation
Z. Liang et al., "Molecular Simulation of Steady-State Evaporation and Condensation: Validity of the Schrage Relationships," International Journal of Heat and Mass Transfer, vol. 114, pp. 105 - 114, Elsevier, Jan 2017.
The definitive version is available at https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.025
Department(s)
Mechanical and Aerospace Engineering
International Standard Serial Number (ISSN)
0017-9310
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2023 Elsevier, All rights reserved.
Publication Date
01 Jan 2017