Abstract

Local thermal history can significantly vary in parts during metal Additive Manufacturing (AM), leading to local defects. However, the sequential layer-by-layer nature of AM facilitates in-situ part voxelmetric observations that can be used to detect and correct these defects for part qualification and quality control. The challenge is to relate this local radiometric data with local defect information to estimate process error likelihood in future builds. This paper uses a Short-Wave Infrared (SWIR) camera to record the temperature history for parts manufactured with Laser Powder Bed Fusion (LPBF) processes. The porosity from a cylindrical specimen is measured by ex-situ micro-computed tomography (μCT). Specimen data from the SWIR camera, combined with the μCT data, are used to generate thermal feature-based porosity probability maps. The porosity predictions made by various SWIR thermal feature-porosity probability maps of a specimen with a complex geometry are scored against the true porosity obtained via μCT. The receiver operating characteristic curves constructed from the predictions for the complex sample demonstrate the porosity probability mapping methodology's potential for in-situ based porosity detection.

Department(s)

Mechanical and Aerospace Engineering

Comments

U.S. Department of Energy, Grant DE-NA0002839

Keywords and Phrases

Laser Powder Bed Fusion; Porosity detection; Receiver operating characteristic; SWIR

International Standard Serial Number (ISSN)

0924-0136

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2023 Elsevier, All rights reserved.

Publication Date

01 Apr 2022

Share

 
COinS