A Neuroadaptive Architecture for Model Reference Control of Uncertain Dynamical Systems with Performance Guarantees
Abstract
Neuroadaptive control systems have the capability to approximate unstructured system uncertainties on a given compact set using neural networks. Yet, a challenge in their design is to guarantee the closed-loop system trajectories stay in this set such that the universal function approximation property is satisfied and the overall system stability is achieved. To address this challenge, we present and analyze a new neuroadaptive architecture in this paper for model reference control of uncertain dynamical systems with strict performance guarantees. Specifically, the proposed architecture is predicated on a novel set-theoretic framework and has the capability to keep the closed-loop system trajectories within an a-priori, user-defined compact set without violating the universal function approximation property. A transport aircraft example is also given to complement the presented theoretical results.
Recommended Citation
E. Arabi et al., "A Neuroadaptive Architecture for Model Reference Control of Uncertain Dynamical Systems with Performance Guarantees," Systems and Control Letters, vol. 125, pp. 37 - 44, Elsevier B.V., Mar 2019.
The definitive version is available at https://doi.org/10.1016/j.sysconle.2019.01.005
Department(s)
Mechanical and Aerospace Engineering
Keywords and Phrases
Model reference control; Neuroadaptive control; Stability and performance guarantees; Uncertain systems
International Standard Serial Number (ISSN)
0167-6911
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2019 Elsevier B.V., All rights reserved.
Publication Date
01 Mar 2019