Abstract

Additive manufactured (AM) parts are produced at low volume or with complex geometries. Identifying internal defects is difficult as current testing techniques are not optimized for AM processes. The goal of this paper is to evaluate defects on multiple parts printed on the same build plate. The technique used was resonant frequency testing with the results verified through Finite Element Analysis. From these tests, it was found that the natural frequencies needed to detect the defects were higher than the excitation provided by a modal hammer. The deficiencies in this range led to the development of other excitation methods. Based on these results, traditional methods of resonant part inspection are not sufficient, but special methods can be developed for specific cases.

Meeting Name

30th Annual International Solid Freeform Fabrication Symposium -- An Additive Manufacturing Conference, SFF 2019 (2019: Aug. 12-14, Austin, TX)

Department(s)

Mechanical and Aerospace Engineering

Comments

This work was funded by the Department of Energy’s Kansas City National Security Campus which is operated and managed by Honeywell Federal Manufacturing Technologies, LLC under contract number DE-NA0002839.

Document Type

Article - Conference proceedings

Document Version

Final Version

File Type

text

Language(s)

English

Publication Date

14 Aug 2019

Included in

Manufacturing Commons

Share

 
COinS