Abstract
We experimentally and numerically demonstrate the transverse electrical response produced by circularly-polarized light with normal incidence observed as transverse photoinduced voltage across the plasmonic metasurface made of triangle holes. The measured transverse photo-induced voltage is consistent with the calculated acting force on electrons in the metasurface by using the Maxwell's stress tensor. The polarity of voltage reverses as the incident spin (light helicity) switches from right-handed circular polarization to left-handed circular polarization. The origin of the spin-dependent voltage sign is the broken symmetries of the electric and magnetic fields in the triangle hole due to the opposite circular polarizations. The demonstrated results open up many opportunities in further investigating the second-order nonlinear optical effects of metamaterials and metasurfaces, and developing applications in high-speed photodetectors, polarimeters, and optical sensors.
Recommended Citation
M. Akbari et al., "Generation of Transverse Photo-Induced Voltage in Plasmonic Metasurfaces of Triangle Holes," Optics Express, vol. 26, no. 16, pp. 21194 - 21203, Optical Society of America (OSA), Aug 2018.
The definitive version is available at https://doi.org/10.1364/OE.26.021194
Department(s)
Mechanical and Aerospace Engineering
Research Center/Lab(s)
Intelligent Systems Center
Keywords and Phrases
Photodetectors; Plasmonics; Plasmons; Circularly polarized light; Electric and magnetic fields; High speed photodetectors; Normal incidence; Opposite circular polarizations; Photo-induced voltage; Second-order nonlinear optical; Transverse electrical; Circular polarization
International Standard Serial Number (ISSN)
1094-4087
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2018 Optical Society of America (OSA), All rights reserved.
Publication Date
01 Aug 2018
Comments
National Science Foundation (NSF) (ECCS-1653032, DMR-1552871); Office of Naval Research (ONR) (N00014-16-1-2408).