Masters Theses
Keywords and Phrases
Bioactive glass; Biocompatible devices; Biodegradable devices; Bioresorbable devices; Implantable electronic devices; Transient electronics
Abstract
"Implantable electronic devices have great potential to benefit many health care technologies. They comprise of two different categories. The first is permanent prosthetic devices like cardiac pacemakers or nerve stimulants. The other category includes temporary devices for interventional medical monitoring and control scenarios, which lose functionality and become unnecessary after their intended operational lifetime. This can cause serious electromagnetic and biomechanical safety concerns if not removed from the body by an additional surgical operation.
This thesis focuses on exploring the feasibility of implantable inorganic bioresorbable thin film resistive devices utilizing bioactive glass as the core structural material. This device will be fully functional inside the human body for a desired time period and then will completely dissolve without causing any safety issues. A bioactive borate glass wafer was used as the substrate for the devices. The chemical composition of bioactive glass can be varied to control the dissolution rate in biological environments. We built a test structure composed of an insulating layer (silicon oxide) and metal electrodes (gold-palladium). The insulating layers were deposited using two different methods. The first one being physical vapor deposition (radio frequency sputtering) and the other being chemical vapor deposition (plasma-enhanced chemical vapor deposition). They were then subsequently tested for their operation in simulated body fluids. This feasibility study is expected to lead to a variety of useful sensors and actuators (e.g. temperature, pressure, flow, metabolites and radiation dose, etc.) that can be applied to many areas (e.g. circulation, rehabilitation, diabetes, cardiology, drug delivery, radiation oncology) that can benefit temporary implantable devices"--Abstract, page iii.
Advisor(s)
Kim, Chang-Soo
Committee Member(s)
Day, D. E.
O'Keefe, Matthew
Department(s)
Electrical and Computer Engineering
Degree Name
M.S. in Computer Engineering
Publisher
Missouri University of Science and Technology
Publication Date
Summer 2014
Pagination
x, 66 pages
Note about bibliography
Includes bibliographical references (pages 50-51).
Rights
© 2014 Kassan Unda, All rights reserved.
Document Type
Thesis - Open Access
File Type
text
Language
English
Thesis Number
T 11509
Electronic OCLC #
1104294822
Recommended Citation
Unda, Kassan, "Inorganic biodegradable devices for temporary implants" (2014). Masters Theses. 7872.
https://scholarsmine.mst.edu/masters_theses/7872
Included in
Biomedical Engineering and Bioengineering Commons, Electrical and Computer Engineering Commons, Materials Science and Engineering Commons