Location
San Diego, California
Presentation Date
26 May 2010, 5:30 pm - 6:00 pm
Abstract
This paper concerns prediction of liquefaction-induced large deformation of geotechnical structures that will play major roles in practice of seismic performance design. To do this prediction, it is essential to establish a mechanical model for liquefied sand in which effective stress is null or extremely low. Although past model tests suggested that liquefied sand behaves similar to viscous liquid, there is an opinion against it that pore water pressure distribution in embedded structures produces an apparent rate-dependent behavior. This opinion was examined precisely and quantitatively by analyzing a full-scale model test to find that the pore pressure theory cannot account for the observed behavior. Then the authors conducted a new type of triaxial tests in which the effective stress was made extremely low, similar to the situation in fully liquefied sand, by free falling of a test device in a vertical shaft, thus making the gravity be zero, and a rate-dependent nature of liquefied sand was observed. By using the observed behavior of liquefied sand, a viscous model was developed. This viscous model was made use of to evaluate the performance of different mitigation measures that were proposed for river levees and other embankments subjected to liquefaction problems.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
5th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics
Publisher
Missouri University of Science and Technology
Document Version
Final Version
Rights
© 2010 Missouri University of Science and Technology, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Towhata, Ikuo; Anh, Trinh Thi Lan; Yamada, Suguru; Motamed, Ramin; and Kobayashi, Yoshikazu, "Zero-Gravity Triaxial Shear Tests on Mechanical Properties of Liquefied Sand and Performance Assessment of Mitigations Against Large Ground Deformation" (2010). International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 11.
https://scholarsmine.mst.edu/icrageesd/05icrageesd/session12/11
Included in
Zero-Gravity Triaxial Shear Tests on Mechanical Properties of Liquefied Sand and Performance Assessment of Mitigations Against Large Ground Deformation
San Diego, California
This paper concerns prediction of liquefaction-induced large deformation of geotechnical structures that will play major roles in practice of seismic performance design. To do this prediction, it is essential to establish a mechanical model for liquefied sand in which effective stress is null or extremely low. Although past model tests suggested that liquefied sand behaves similar to viscous liquid, there is an opinion against it that pore water pressure distribution in embedded structures produces an apparent rate-dependent behavior. This opinion was examined precisely and quantitatively by analyzing a full-scale model test to find that the pore pressure theory cannot account for the observed behavior. Then the authors conducted a new type of triaxial tests in which the effective stress was made extremely low, similar to the situation in fully liquefied sand, by free falling of a test device in a vertical shaft, thus making the gravity be zero, and a rate-dependent nature of liquefied sand was observed. By using the observed behavior of liquefied sand, a viscous model was developed. This viscous model was made use of to evaluate the performance of different mitigation measures that were proposed for river levees and other embankments subjected to liquefaction problems.