Location

San Diego, California

Presentation Date

27 May 2010, 11:20 am - 11:40 am

Abstract

There has been increasingly high intensity of acceleration ever recorded during earthquakes in recent times. In consistence with this trend several characteristics have been unearthed regarding performances of rockfill dams. With due considerations to these, damage features of high rockfill dams during recent earthqukes in Japan and China are briefly introduced herein, together with those previously reported. As an indicator of overall distress to the dams, the crest settlement was taken up and it was shown that the settlement tends to increase up to about 1.5% of the height of the dam with increasing acceleration during earthquakes.

Department(s)

Civil, Architectural and Environmental Engineering

Meeting Name

5th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics

Publisher

Missouri University of Science and Technology

Document Version

Final Version

Rights

© 2010 Missouri University of Science and Technology, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Document Type

Article - Conference proceedings

File Type

text

Language

English

Share

COinS
 
May 24th, 12:00 AM May 29th, 12:00 AM

Performances of Rockfill Dams During Recent Large Earthquakes

San Diego, California

There has been increasingly high intensity of acceleration ever recorded during earthquakes in recent times. In consistence with this trend several characteristics have been unearthed regarding performances of rockfill dams. With due considerations to these, damage features of high rockfill dams during recent earthqukes in Japan and China are briefly introduced herein, together with those previously reported. As an indicator of overall distress to the dams, the crest settlement was taken up and it was shown that the settlement tends to increase up to about 1.5% of the height of the dam with increasing acceleration during earthquakes.