Location
San Diego, California
Presentation Date
28 May 2010, 5:30 pm - 6:15 pm
Abstract
Three-dimensional (3D) computational simulation is increasingly allowing for insights into the mechanics of seismic soil-structure system response. Calibration is being facilitated by field, full-scale, and centrifuge model laboratory data. Computational algorithms and scenario-specific graphical user-interfaces are gradually permitting the routine adoption of such geometrically realistic simulation environments. This paper presents an overview of salient recent 3D soil-foundation-structure earthquake response simulations. Developments related to graphical user-interfaces (OpenSeesPL, http://cyclic.ucsd.edu/openseespl) are summarized, demonstrating the current and evolving capabilities towards performance-based earthquake engineering (PBEE). From an OpenSeesPL-generated lateral push-over analysis of a large pile-group, it is shown that corner piles may shoulder a significantly higher level of load (axial, shear, and bending). Evolution of large tensile forces in these piles may warrant careful consideration. Modeling of liquefaction response mechanisms are also discussed, highlighting the role of cyclic mobility and influence of permeability in dictating the level of associated ground shear deformations, and related countermeasure performance.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
5th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics
Publisher
Missouri University of Science and Technology
Document Version
Final Version
Rights
© 2010 Missouri University of Science and Technology, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Elgamal, Ahmed, "Calibrated 3D Computational Modeling of Soil-Structure Systems and Liquefaction Scenarios" (2010). International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 1.
https://scholarsmine.mst.edu/icrageesd/05icrageesd/session10/1
Included in
Calibrated 3D Computational Modeling of Soil-Structure Systems and Liquefaction Scenarios
San Diego, California
Three-dimensional (3D) computational simulation is increasingly allowing for insights into the mechanics of seismic soil-structure system response. Calibration is being facilitated by field, full-scale, and centrifuge model laboratory data. Computational algorithms and scenario-specific graphical user-interfaces are gradually permitting the routine adoption of such geometrically realistic simulation environments. This paper presents an overview of salient recent 3D soil-foundation-structure earthquake response simulations. Developments related to graphical user-interfaces (OpenSeesPL, http://cyclic.ucsd.edu/openseespl) are summarized, demonstrating the current and evolving capabilities towards performance-based earthquake engineering (PBEE). From an OpenSeesPL-generated lateral push-over analysis of a large pile-group, it is shown that corner piles may shoulder a significantly higher level of load (axial, shear, and bending). Evolution of large tensile forces in these piles may warrant careful consideration. Modeling of liquefaction response mechanisms are also discussed, highlighting the role of cyclic mobility and influence of permeability in dictating the level of associated ground shear deformations, and related countermeasure performance.