Location
San Diego, California
Presentation Date
29 May 2010, 8:00 am - 9:30 am
Abstract
The purpose of this test was to realistically reproduce soil liquefaction and the lateral spreading of saturated sand deposits behind the sheet-pile quay walls and the consequent deformation and translation of neighboring pile foundations. Therefore, a shake table test was carried out using a large-scale laminar box on the large-scale shake table in Tsukuba. The inside dimensions of the model were 11.6 m in length, 3.1 m in width and 4.5 m in depth. Next, a dynamic centrifuge test on the behavior of a sheet-pile wall and a soil pile system was conducted to simulate that of a large-scale shake table test as a prototype. The shake table test was performed under a centrifuge acceleration of 15g. The large-scale test results showed that the lateral displacement of the sheet-pile is increased by about 5 seconds during the shaking, while the sheet-pile showed significant lateral spreading for about 200 seconds after the shaking. The centrifuge study generally confirmed that it is possible to simulate a large-scale test for lateral spreading of a sheet-pile wall and its backfill.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
5th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics
Publisher
Missouri University of Science and Technology
Document Version
Final Version
Rights
© 2010 Missouri University of Science and Technology, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Sato, Masayoshi; Tabata, Kentaro; and Abe, Akio, "Large-Scale Shake Table Test on Lateral Spreading of a Sheet-Pile Wall Model and Its Centrifuge Simulation" (2010). International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 9.
https://scholarsmine.mst.edu/icrageesd/05icrageesd/session08/9
Included in
Large-Scale Shake Table Test on Lateral Spreading of a Sheet-Pile Wall Model and Its Centrifuge Simulation
San Diego, California
The purpose of this test was to realistically reproduce soil liquefaction and the lateral spreading of saturated sand deposits behind the sheet-pile quay walls and the consequent deformation and translation of neighboring pile foundations. Therefore, a shake table test was carried out using a large-scale laminar box on the large-scale shake table in Tsukuba. The inside dimensions of the model were 11.6 m in length, 3.1 m in width and 4.5 m in depth. Next, a dynamic centrifuge test on the behavior of a sheet-pile wall and a soil pile system was conducted to simulate that of a large-scale shake table test as a prototype. The shake table test was performed under a centrifuge acceleration of 15g. The large-scale test results showed that the lateral displacement of the sheet-pile is increased by about 5 seconds during the shaking, while the sheet-pile showed significant lateral spreading for about 200 seconds after the shaking. The centrifuge study generally confirmed that it is possible to simulate a large-scale test for lateral spreading of a sheet-pile wall and its backfill.