Location
San Diego, California
Presentation Date
29 May 2010, 8:00 am - 9:30 am
Abstract
The paper describes a testing methodology, instrumentation array and example data interpretation for reduced-scale geosynthetic reinforced soil (GRS) wall models built on a large shaking table. The testing program is unique in the literature because of the large number of different instruments deployed and the use of Particle Image Velocimetry (PIV) analysis of imagery captured using a high speed camera. The models are instrumented with strain gauges and extensometers attached to the geogrid reinforcing layers, LVDTs attached to the facing panel, load cells at the wall toe, reinforcement-facing load measurement, and accelerometers in the backfill and along the facing. Example measurements are reported that demonstrate the value of the experimental technique to better understand the mechanics of these systems under simulated earthquake.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
5th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics
Publisher
Missouri University of Science and Technology
Document Version
Final Version
Rights
© 2010 Missouri University of Science and Technology, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Zarnani, Saman; Bathurst, Richard J.; and Take, W. Andy, "Shaking Table Methodology and Instrumentation for Reinforced Soil Retaining Walls" (2010). International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 12.
https://scholarsmine.mst.edu/icrageesd/05icrageesd/session08/12
Included in
Shaking Table Methodology and Instrumentation for Reinforced Soil Retaining Walls
San Diego, California
The paper describes a testing methodology, instrumentation array and example data interpretation for reduced-scale geosynthetic reinforced soil (GRS) wall models built on a large shaking table. The testing program is unique in the literature because of the large number of different instruments deployed and the use of Particle Image Velocimetry (PIV) analysis of imagery captured using a high speed camera. The models are instrumented with strain gauges and extensometers attached to the geogrid reinforcing layers, LVDTs attached to the facing panel, load cells at the wall toe, reinforcement-facing load measurement, and accelerometers in the backfill and along the facing. Example measurements are reported that demonstrate the value of the experimental technique to better understand the mechanics of these systems under simulated earthquake.