Location
San Diego, California
Presentation Date
28 May 2010, 2:00 pm - 3:30 pm
Abstract
Underground structures such as tunnels have a lower unit weight than the surrounding soil and are commonly deemed to be susceptible to floatation in liquefiable soil. In the process of floatation, the tunnel has to possess ample buoyancy force to shear and carry the overlying soil upwards. This is aided by soil liquefaction resulting from the increase in water pressure with number of earthquake loading cycles. With onset of liquefaction, effective stress decreases which lead to a reduction in the shear strength of soil, hence assisting the floatation of tunnel. Conversely, the total stress exerted by the overburden soil suppresses the process. A series of centrifuge tests were conducted to investigate the floatation of tunnels in liquefiable sand deposits. This paper discusses the initiation and cessation of the floatation as well as the floatation susceptibility of varying depths of tunnels.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
5th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics
Publisher
Missouri University of Science and Technology
Document Version
Final Version
Rights
© 2010 Missouri University of Science and Technology, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Chian, S. C. and Madabhushi, S. P. G., "Floatation of Tunnel in Liquefiable Soil" (2010). International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 2.
https://scholarsmine.mst.edu/icrageesd/05icrageesd/session07/2
Included in
Floatation of Tunnel in Liquefiable Soil
San Diego, California
Underground structures such as tunnels have a lower unit weight than the surrounding soil and are commonly deemed to be susceptible to floatation in liquefiable soil. In the process of floatation, the tunnel has to possess ample buoyancy force to shear and carry the overlying soil upwards. This is aided by soil liquefaction resulting from the increase in water pressure with number of earthquake loading cycles. With onset of liquefaction, effective stress decreases which lead to a reduction in the shear strength of soil, hence assisting the floatation of tunnel. Conversely, the total stress exerted by the overburden soil suppresses the process. A series of centrifuge tests were conducted to investigate the floatation of tunnels in liquefiable sand deposits. This paper discusses the initiation and cessation of the floatation as well as the floatation susceptibility of varying depths of tunnels.