Location
San Diego, California
Presentation Date
28 May 2010, 2:00 pm - 3:30 pm
Abstract
An underwater reinforced concrete tunnel roof is subjected to an internal gas explosion. Dynamic analyses are performed for three cases, namely, (1) an uncoupled solution, (2) class II coupling analysis and (3) full model with class I and II couplings. Three load cases are considered, dead (gravity) load, uniformly distributed vertical loads from sand and water and finally an internal pressure gas explosion. Linear and non-linear constitutive relationships are considered for the materials constituting the gas explosion problem. Results include time deflection of tunnel roof, time histories of stresses in vertical reinforcing bars and contours of concrete stresses for tunnel roof. By conducting analyses from various models, the question whether the tunnel would be damaged to such an extent that its serviceability would be impaired is investigated.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
5th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics
Publisher
Missouri University of Science and Technology
Document Version
Final Version
Rights
© 2010 Missouri University of Science and Technology, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Al-Damluji, Omar Al-Farouk Salem; Al-Sa'aty, Akram Younis Thannon; and Al-Nu'aimy, Rafi' Mahmoud Sulaiman, "Effects of Internal Gas Explosion on an Underwater Tunnel Roof" (2010). International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 7.
https://scholarsmine.mst.edu/icrageesd/05icrageesd/session06/7
Included in
Effects of Internal Gas Explosion on an Underwater Tunnel Roof
San Diego, California
An underwater reinforced concrete tunnel roof is subjected to an internal gas explosion. Dynamic analyses are performed for three cases, namely, (1) an uncoupled solution, (2) class II coupling analysis and (3) full model with class I and II couplings. Three load cases are considered, dead (gravity) load, uniformly distributed vertical loads from sand and water and finally an internal pressure gas explosion. Linear and non-linear constitutive relationships are considered for the materials constituting the gas explosion problem. Results include time deflection of tunnel roof, time histories of stresses in vertical reinforcing bars and contours of concrete stresses for tunnel roof. By conducting analyses from various models, the question whether the tunnel would be damaged to such an extent that its serviceability would be impaired is investigated.