Location
San Diego, California
Presentation Date
26 May 2010, 4:45 pm - 6:45 pm
Abstract
Soil nailing is an efficient method to stabilize different soil structures. The method has been extensively used for improving stability of slopes. The construction process of Soil nailed walls commonly involve three basic sections: excavation, nail installation and face stabilization. The nail bars are inserted into ground by either drilling or grouting and are usually arranged in both horizontal and vertical directions. Present research intends to understand Soil-nailed wall behavior under dynamic excitations. Employing finite difference method a three dimensional model has been developed in the proper finite difference code. Soil constitutive behavior for dynamic analyses is predicted taking into account soil hysteresis behavior. To simulate nail bars cable structural elements are employed and also liner structural elements will be utilized for shotcrete facing. Dynamic excitation incorporated as semi-seismic harmonic loading is applied at the bottom of the model where represents soil subgrade. The boundary conditions are considered to be antisymmetric during dynamic analyses. Effects of different crucial factors are monitored during investigations. Some parameters such as, input motion frequency, nail inclination, nail length as well as soil strength properties have been examined.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
5th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics
Publisher
Missouri University of Science and Technology
Document Version
Final Version
Rights
© 2010 Missouri University of Science and Technology, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Sheikhbahaei, Alimohammad; Halabian, Amir M.; and Hashemolhosseini, S. Hamid, "Analysis of Soil Nailed Walls Under Harmonic Dynamic Excitations Using Finite Difference Method" (2010). International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 5.
https://scholarsmine.mst.edu/icrageesd/05icrageesd/session05/5
Included in
Analysis of Soil Nailed Walls Under Harmonic Dynamic Excitations Using Finite Difference Method
San Diego, California
Soil nailing is an efficient method to stabilize different soil structures. The method has been extensively used for improving stability of slopes. The construction process of Soil nailed walls commonly involve three basic sections: excavation, nail installation and face stabilization. The nail bars are inserted into ground by either drilling or grouting and are usually arranged in both horizontal and vertical directions. Present research intends to understand Soil-nailed wall behavior under dynamic excitations. Employing finite difference method a three dimensional model has been developed in the proper finite difference code. Soil constitutive behavior for dynamic analyses is predicted taking into account soil hysteresis behavior. To simulate nail bars cable structural elements are employed and also liner structural elements will be utilized for shotcrete facing. Dynamic excitation incorporated as semi-seismic harmonic loading is applied at the bottom of the model where represents soil subgrade. The boundary conditions are considered to be antisymmetric during dynamic analyses. Effects of different crucial factors are monitored during investigations. Some parameters such as, input motion frequency, nail inclination, nail length as well as soil strength properties have been examined.