Location
San Diego, California
Presentation Date
27 May 2010, 4:30 pm - 6:20 pm
Abstract
This work presents a probabilistic method for estimating earthquake-induced nonlinear slope displacements. This method is applicable to any kind of slope, embankment and earth/rockfill dam. When coupled with Probabilistic Seismic Hazard Analysis at the slope site, it produces estimates of the annual probability that a permanent deformation of the slope will be exceeded. The proposed method uses a set of 2D numerical analyses with non-linear constitutive relationships for the soil formations to establish a probabilistic relationship between one or more ground motion parameters and the permanent displacement at a specific location within the slope. The analyses, which are performed using the computer code FLAC 5.0 (Itasca, 2005), use as input a set of different recorded accelerograms that include both horizontal and vertical components. The method is applied to the Salcito landslide (Molise, Southern Italy), which was investigated in detail by Bozzano et al. (2008). The stability of the same slope is also assessed using the conventional Newmark’s method and a decoupled approach and the results are compared and contrasted with those obtained using FLAC.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
5th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics
Publisher
Missouri University of Science and Technology
Document Version
Final Version
Rights
© 2010 Missouri University of Science and Technology, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Barani, Simone; Bazzurro, Paolo; and Pelli, Fabrizio, "A Probabilistic Method for the Prediction of Earthquake-Induced Slope Displacements" (2010). International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 3.
https://scholarsmine.mst.edu/icrageesd/05icrageesd/session04b/3
Included in
A Probabilistic Method for the Prediction of Earthquake-Induced Slope Displacements
San Diego, California
This work presents a probabilistic method for estimating earthquake-induced nonlinear slope displacements. This method is applicable to any kind of slope, embankment and earth/rockfill dam. When coupled with Probabilistic Seismic Hazard Analysis at the slope site, it produces estimates of the annual probability that a permanent deformation of the slope will be exceeded. The proposed method uses a set of 2D numerical analyses with non-linear constitutive relationships for the soil formations to establish a probabilistic relationship between one or more ground motion parameters and the permanent displacement at a specific location within the slope. The analyses, which are performed using the computer code FLAC 5.0 (Itasca, 2005), use as input a set of different recorded accelerograms that include both horizontal and vertical components. The method is applied to the Salcito landslide (Molise, Southern Italy), which was investigated in detail by Bozzano et al. (2008). The stability of the same slope is also assessed using the conventional Newmark’s method and a decoupled approach and the results are compared and contrasted with those obtained using FLAC.