Location
San Diego, California
Presentation Date
29 May 2010, 8:00 am - 9:30 am
Abstract
This study concerns ground strains that result from spatially variable ground motions unrelated to ground failure. Prior empirical work shows a dependence of peak ground strain (PGS) on peak ground displacement (PGD) but is applicable only for weak motions (PGD < 10 cm). Prior semi-empirical work, in which strains were evaluated from simulated ground motions that preserve the coherency, Fourier amplitude variability and wave passage observed in array recordings, found a similar dependence of PGS on PGD but also a significant dependence on separation distance of observation points. Here we describe a procedure to calculate PGS between pairs of stations in an array to test the separation dependence of PGS. The Lotung LSST array was selected due to its closely spaced stations (6 to 85 m) and large number of recordings. The PGS estimated from station pairs from 11 events illustrate that the distance dependence of PGS is statistically significant, with PGS increasing as separation distance decreases.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
5th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics
Publisher
Missouri University of Science and Technology
Document Version
Final Version
Rights
© 2010 Missouri University of Science and Technology, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Ancheta, Timothy D. and Stewart, Jonathan P., "A Validation Study of a Seismically Induced Ground Strain Model Using Strong Motion Array Data" (2010). International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 2.
https://scholarsmine.mst.edu/icrageesd/05icrageesd/session03/2
Included in
A Validation Study of a Seismically Induced Ground Strain Model Using Strong Motion Array Data
San Diego, California
This study concerns ground strains that result from spatially variable ground motions unrelated to ground failure. Prior empirical work shows a dependence of peak ground strain (PGS) on peak ground displacement (PGD) but is applicable only for weak motions (PGD < 10 cm). Prior semi-empirical work, in which strains were evaluated from simulated ground motions that preserve the coherency, Fourier amplitude variability and wave passage observed in array recordings, found a similar dependence of PGS on PGD but also a significant dependence on separation distance of observation points. Here we describe a procedure to calculate PGS between pairs of stations in an array to test the separation dependence of PGS. The Lotung LSST array was selected due to its closely spaced stations (6 to 85 m) and large number of recordings. The PGS estimated from station pairs from 11 events illustrate that the distance dependence of PGS is statistically significant, with PGS increasing as separation distance decreases.