Location
San Diego, California
Presentation Date
29 May 2010, 8:00 am - 9:30 am
Abstract
Design of an on-site seismic early warning system for critical facilities, based on P-wave detection, requires knowledge of local seismicity, analysis of strong-motion records, and local geological settings. The scope of current paper is to present an efficient and reliable methodology for P-wave detection and discrimination. It is tolerant to the environmental, traffic and other types of noise at the location of the critical facility. The basic idea that is exploited in the proposed algorithm is the degree of P-wave polarization, which is obtained with Karhunen- Loève transform of the orthogonal triaxial records. A system consisting of borehole sensor array that has been designed based on these ideas is described and some preliminary results are provided. This system has been already implemented to provide earthquake early warning for a tunnel on a major highway in British Columbia, Canada.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
5th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics
Publisher
Missouri University of Science and Technology
Document Version
Final Version
Rights
© 2010 Missouri University of Science and Technology, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Zaicenco, Anton; Huffman, Sharlie; and Weir-Jones, Iain, "Seismic P-Wave Polarization in the Context of On-Site Early Warning System" (2010). International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 13.
https://scholarsmine.mst.edu/icrageesd/05icrageesd/session03/13
Included in
Seismic P-Wave Polarization in the Context of On-Site Early Warning System
San Diego, California
Design of an on-site seismic early warning system for critical facilities, based on P-wave detection, requires knowledge of local seismicity, analysis of strong-motion records, and local geological settings. The scope of current paper is to present an efficient and reliable methodology for P-wave detection and discrimination. It is tolerant to the environmental, traffic and other types of noise at the location of the critical facility. The basic idea that is exploited in the proposed algorithm is the degree of P-wave polarization, which is obtained with Karhunen- Loève transform of the orthogonal triaxial records. A system consisting of borehole sensor array that has been designed based on these ideas is described and some preliminary results are provided. This system has been already implemented to provide earthquake early warning for a tunnel on a major highway in British Columbia, Canada.