Location

San Diego, California

Session Start Date

5-24-2010

Session End Date

5-29-2010

Abstract

Pile-supported wharf is a general option in port design to provide lateral resistance and bearing capacity under both static and dynamic loadings. In situ large-scale physical modeling using surface wave generator was performed to study the dynamic soil-structure interactions in pile-supported wharves and to serve as a prototype for in situ monitoring station. A wharf model consisting of 2 steel pipe piles welded on a steel slab was installed on a reconstituted underwater embankment. Due to screening of stress wave, the two piles are subjected to different loading conditions. Data reduction procedures were developed to analyze coupled shear strain-pore pressure generation behavior, pile responses, and soil-pile interaction characteristics. The results proved that the physical modeling can capture the interactions among the induced shear strain, generated excess pore pressure, and dynamic p-y behavior around piles. Preliminary results also show that evolutions of dynamic p-y curve with excess pore pressure variations should be included in soil-pile interaction modeling.

Department(s)

Civil, Architectural and Environmental Engineering

Appears In

International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics

Meeting Name

Fifth Conference

Publisher

Missouri University of Science and Technology

Publication Date

5-24-2010

Document Version

Final Version

Rights

© 2010 Missouri University of Science and Technology, All rights reserved.

Document Type

Article - Conference proceedings

File Type

text

Language

English

Share

COinS
 
May 24th, 12:00 AM May 29th, 12:00 AM

Large Scale Model Test for Pile-Supported Wharf in Liquefied Sand

San Diego, California

Pile-supported wharf is a general option in port design to provide lateral resistance and bearing capacity under both static and dynamic loadings. In situ large-scale physical modeling using surface wave generator was performed to study the dynamic soil-structure interactions in pile-supported wharves and to serve as a prototype for in situ monitoring station. A wharf model consisting of 2 steel pipe piles welded on a steel slab was installed on a reconstituted underwater embankment. Due to screening of stress wave, the two piles are subjected to different loading conditions. Data reduction procedures were developed to analyze coupled shear strain-pore pressure generation behavior, pile responses, and soil-pile interaction characteristics. The results proved that the physical modeling can capture the interactions among the induced shear strain, generated excess pore pressure, and dynamic p-y behavior around piles. Preliminary results also show that evolutions of dynamic p-y curve with excess pore pressure variations should be included in soil-pile interaction modeling.