Location
San Diego, California
Presentation Date
26 May 2010, 4:45 pm - 6:45 pm
Abstract
This research uses shake table testing of scale soil-structure models to mimic the coupled seismic response of underground structures and surrounding/supporting soil (termed soil-structural-interaction or SSI). Currently the seismic design of subways and other critical underground infrastructure rely on little to no empirical data for calibrating numerical simulations. This research is working towards filling that empirical data gap. The research is composed of two phases, the first a validation of the free-field response of a flexible wall barrel filled with model soil, the second a test to measure the “racking” deformations induced in a model subway cross-section embedded in the model soil. San Francisco Young Bay Mud (YBM) is used as the prototype soil and the Bay Area Rapid Transit (BART) underground subway cross-section the prototype structure. Results are shown from the completed first phase of the test, and a presentation of the second phase test results is anticipated at the time of the conference. This research is a collaborative project between California Polytechnic State University (Cal Poly) in San Luis Obispo, California, and Nanjing University of Technology (NJUT) in Nanjing, China.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
5th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics
Publisher
Missouri University of Science and Technology
Document Version
Final Version
Rights
© 2010 Missouri University of Science and Technology, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Moss, Robb Eric S.; Crosariol, Vic; and Kuo, Steven, "Shake Table Testing to Quantify Seismic Soil-Structure-Interaction of Underground Structures" (2010). International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 22.
https://scholarsmine.mst.edu/icrageesd/05icrageesd/session01b/22
Included in
Shake Table Testing to Quantify Seismic Soil-Structure-Interaction of Underground Structures
San Diego, California
This research uses shake table testing of scale soil-structure models to mimic the coupled seismic response of underground structures and surrounding/supporting soil (termed soil-structural-interaction or SSI). Currently the seismic design of subways and other critical underground infrastructure rely on little to no empirical data for calibrating numerical simulations. This research is working towards filling that empirical data gap. The research is composed of two phases, the first a validation of the free-field response of a flexible wall barrel filled with model soil, the second a test to measure the “racking” deformations induced in a model subway cross-section embedded in the model soil. San Francisco Young Bay Mud (YBM) is used as the prototype soil and the Bay Area Rapid Transit (BART) underground subway cross-section the prototype structure. Results are shown from the completed first phase of the test, and a presentation of the second phase test results is anticipated at the time of the conference. This research is a collaborative project between California Polytechnic State University (Cal Poly) in San Luis Obispo, California, and Nanjing University of Technology (NJUT) in Nanjing, China.