Location
San Diego, California
Presentation Date
26 May 2010, 4:45 pm - 6:45 pm
Abstract
A new method for evaluating spatial variability of soil strains during earthquakes is developed. The idea is based on electrical resisitivity concepts. By solving the classic Maxwell’s equations applying Green’s function for the boundary conditions, we obtained a closed form solution relating the electric potential measurements to the soil’s displacements during earthquakes. The displacement information can be further used to obtain soil strains. In centrifuge models, the displacement measurements using an electrode switching system have been demonstrated to have spatial and temporal resolutions of 1 mm and 1 ms. Based on the high resolution of the displacement that is obtainable, strains of the soil matrix can be computed. The scheme of the method is to establish electromagnetic fields in saturated soil by injecting low-frequency alternating currents through electrodes in a designed mesh and the displacement of the soil is related to the change of electrical potential measured on the electrode located at that point. The viability of the technique is demonstrated by measuring the liquefaction-induced displacements of objects in a geotechnical centrifuge model test. This method is considered to be a useful technique for monitoring strain distributions in physical centrifuge models and has practical application potentials in the field.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
5th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics
Publisher
Missouri University of Science and Technology
Document Version
Final Version
Rights
© 2010 Missouri University of Science and Technology, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Li, Zhihua, "A New Method for Evaluating Spatial Variability of Soil Strains Developed during Earthquakes Based on Electrical Resistivity Concepts Using Green’s Function" (2010). International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 19.
https://scholarsmine.mst.edu/icrageesd/05icrageesd/session01b/19
Included in
A New Method for Evaluating Spatial Variability of Soil Strains Developed during Earthquakes Based on Electrical Resistivity Concepts Using Green’s Function
San Diego, California
A new method for evaluating spatial variability of soil strains during earthquakes is developed. The idea is based on electrical resisitivity concepts. By solving the classic Maxwell’s equations applying Green’s function for the boundary conditions, we obtained a closed form solution relating the electric potential measurements to the soil’s displacements during earthquakes. The displacement information can be further used to obtain soil strains. In centrifuge models, the displacement measurements using an electrode switching system have been demonstrated to have spatial and temporal resolutions of 1 mm and 1 ms. Based on the high resolution of the displacement that is obtainable, strains of the soil matrix can be computed. The scheme of the method is to establish electromagnetic fields in saturated soil by injecting low-frequency alternating currents through electrodes in a designed mesh and the displacement of the soil is related to the change of electrical potential measured on the electrode located at that point. The viability of the technique is demonstrated by measuring the liquefaction-induced displacements of objects in a geotechnical centrifuge model test. This method is considered to be a useful technique for monitoring strain distributions in physical centrifuge models and has practical application potentials in the field.