Location

San Diego, California

Presentation Date

26 May 2010, 4:45 pm - 6:45 pm

Abstract

The main objective of this paper is to evaluate liquefaction potential and cyclic failure of subsoils of Tuzla area located on the eastern coast of Cyprus. The in-situ tests of cone penetration test (CPT) and standard penetration test (SPT) were used for site specific evaluation of liquefaction potential. Index properties and undrained shear strength (su) were used to assess cyclic failure potential of fine-grained soils. Liquefaction potential index (LPI) was evaluated based on the calculated factor of safeties for each CPT location. Sensitivity of soils was indirectly estimated from liquidity index (LI). The samples tested displayed high sensitivity values, indicating vulnerability to loss of strength and excess deformations during cyclic loading.

Department(s)

Civil, Architectural and Environmental Engineering

Meeting Name

5th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics

Publisher

Missouri University of Science and Technology

Document Version

Final Version

Rights

© 2010 Missouri University of Science and Technology, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Document Type

Article - Conference proceedings

File Type

text

Language

English

Share

COinS
 
May 24th, 12:00 AM May 29th, 12:00 AM

Assessment of Liquefaction/Cyclic Failure Potential of Alluvial Deposits on the Eastern Coast of Cyprus

San Diego, California

The main objective of this paper is to evaluate liquefaction potential and cyclic failure of subsoils of Tuzla area located on the eastern coast of Cyprus. The in-situ tests of cone penetration test (CPT) and standard penetration test (SPT) were used for site specific evaluation of liquefaction potential. Index properties and undrained shear strength (su) were used to assess cyclic failure potential of fine-grained soils. Liquefaction potential index (LPI) was evaluated based on the calculated factor of safeties for each CPT location. Sensitivity of soils was indirectly estimated from liquidity index (LI). The samples tested displayed high sensitivity values, indicating vulnerability to loss of strength and excess deformations during cyclic loading.