Location
San Diego, California
Presentation Date
26 May 2010, 4:45 pm - 6:45 pm
Abstract
Soil nailing technology can be successfully applied to strengthen natural soil massifs in seismic regions, provided adequate analysis is available. Conventionally, the design of soil nailing is performed iteratively: firstly parameters of nailing and their distribution are assigned, the safety factor of the nailed massif is calculated, if its value is less than 1 then nailing parameters are reassigned, etc. Such “trial and error” approach is laborious and especially so, because different types of ULSs shall be analyzed. The method, discussed in the paper, is based on assumption that the effect of nailing in soil with internal cohesion c=c(x,y) could be simulated by equivalent internal cohesion Δc=Δc(x,y) (deficit) of unreinforced massif. Formulae for calculating nailing parameters are determined on the basis of deficit distribution. A MathCad code has been developed, examples are given. The method can be easily applied to assess seismic stability of nailed soil massifs.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
5th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics
Publisher
Missouri University of Science and Technology
Document Version
Final Version
Rights
© 2010 Missouri University of Science and Technology, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Barvashov, V. A.; Dzhantimirov, Ch. A.; Iovlev, I. M.; Kharlamov, P. V.; and Rytov, S. A., "Seismic Behavior of Nailed Soil Massifs" (2010). International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 23.
https://scholarsmine.mst.edu/icrageesd/05icrageesd/session01/23
Included in
Seismic Behavior of Nailed Soil Massifs
San Diego, California
Soil nailing technology can be successfully applied to strengthen natural soil massifs in seismic regions, provided adequate analysis is available. Conventionally, the design of soil nailing is performed iteratively: firstly parameters of nailing and their distribution are assigned, the safety factor of the nailed massif is calculated, if its value is less than 1 then nailing parameters are reassigned, etc. Such “trial and error” approach is laborious and especially so, because different types of ULSs shall be analyzed. The method, discussed in the paper, is based on assumption that the effect of nailing in soil with internal cohesion c=c(x,y) could be simulated by equivalent internal cohesion Δc=Δc(x,y) (deficit) of unreinforced massif. Formulae for calculating nailing parameters are determined on the basis of deficit distribution. A MathCad code has been developed, examples are given. The method can be easily applied to assess seismic stability of nailed soil massifs.