Location
San Diego, California
Presentation Date
29 Mar 2001, 7:30 pm - 9:30 pm
Abstract
In this paper, liquefaction analysis (LIQCA2D, LIQCA3D) of a petroleum tank-ground-foundation system is conducted using a dynamic finite element-finite difference method. The nonlinearity of the ground is simulated with a kinematic hardening elastoplastic model, which has been verified by a series of hollow cylindrical torsional shear tests and been proved that it can well predict the behaviors of soils such as the liquefaction strength curve, the stress-strain relation as well as the effective stress paths during cyclic loading. In the numerical analyses, an FEM-DEM analytical method is adopted to the soil-water coupled analysis. The petroleum tank is built on a reclaimed ground and is near to seashore. In order to enhance the seismic strength of the tank-soil system, a ring-shaped steel pile wall is designed for the tank. At first, two-dimensional (2-D) and three-dimensional (3-D) finite element analyses are conducted for the tank without the remediation method to identify the difference between 2-D and 3-D analyses. Then, a 3-D dynamic analysis is conducted for the tank in two different cases, that is, with and without the remediation. The mu-nose of the research is to evaluate numerically the effectiveness of the remediation method when a tank is built on a potentially liquefied ground.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
4th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics
Publisher
University of Missouri--Rolla
Document Version
Final Version
Rights
© 2001 University of Missouri--Rolla, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Yashima, A.; Zhang, F.; Sawada, K.; and Uzuoka, R., "Liquefaction Analysis of a Petroleum Tank-Ground-Pile Ring System in Reclaimed Ground Near Seashore" (2001). International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 7.
https://scholarsmine.mst.edu/icrageesd/04icrageesd/session04/7
Included in
Liquefaction Analysis of a Petroleum Tank-Ground-Pile Ring System in Reclaimed Ground Near Seashore
San Diego, California
In this paper, liquefaction analysis (LIQCA2D, LIQCA3D) of a petroleum tank-ground-foundation system is conducted using a dynamic finite element-finite difference method. The nonlinearity of the ground is simulated with a kinematic hardening elastoplastic model, which has been verified by a series of hollow cylindrical torsional shear tests and been proved that it can well predict the behaviors of soils such as the liquefaction strength curve, the stress-strain relation as well as the effective stress paths during cyclic loading. In the numerical analyses, an FEM-DEM analytical method is adopted to the soil-water coupled analysis. The petroleum tank is built on a reclaimed ground and is near to seashore. In order to enhance the seismic strength of the tank-soil system, a ring-shaped steel pile wall is designed for the tank. At first, two-dimensional (2-D) and three-dimensional (3-D) finite element analyses are conducted for the tank without the remediation method to identify the difference between 2-D and 3-D analyses. Then, a 3-D dynamic analysis is conducted for the tank in two different cases, that is, with and without the remediation. The mu-nose of the research is to evaluate numerically the effectiveness of the remediation method when a tank is built on a potentially liquefied ground.