Location
San Diego, California
Presentation Date
29 Mar 2001, 7:30 pm - 9:30 pm
Abstract
Olson (2000) evaluated 33 liquefaction flow failure case histories to assess the yield strength ratio and liquefied strength ratio mobilized during the failures. Using back-analysis procedures developed by Olson (2000), yield and liquefied shear strengths are shown to be proportional to the pre-failure vertical effective stress and are related to standard and cone penetration resistances. This paper examines the triggering of liquefaction and subsequent flow failure of Lower San Fernando Dam using yield and liquefied strength ratios. The yield strength ratio is used to correctly predict the occurrence of liquefaction in the upstream hydraulic fill of the dam, and the liquefied shear strength ratio is used to correctly predict the subsequent flow failure of the upstream slope. The relationships for the yield and liquefied ratios are presented, and their application to existing or new structures is illustrated using the Lower San Fernando Dam case history.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
4th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics
Publisher
University of Missouri--Rolla
Document Version
Final Version
Rights
© 2001 University of Missouri--Rolla, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Olson, Scott M. and Stark, Timothy D., "Liquefaction Analysis of Lower San Fernando Darn Using Strength Ratios" (2001). International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 2.
https://scholarsmine.mst.edu/icrageesd/04icrageesd/session04/2
Included in
Liquefaction Analysis of Lower San Fernando Darn Using Strength Ratios
San Diego, California
Olson (2000) evaluated 33 liquefaction flow failure case histories to assess the yield strength ratio and liquefied strength ratio mobilized during the failures. Using back-analysis procedures developed by Olson (2000), yield and liquefied shear strengths are shown to be proportional to the pre-failure vertical effective stress and are related to standard and cone penetration resistances. This paper examines the triggering of liquefaction and subsequent flow failure of Lower San Fernando Dam using yield and liquefied strength ratios. The yield strength ratio is used to correctly predict the occurrence of liquefaction in the upstream hydraulic fill of the dam, and the liquefied shear strength ratio is used to correctly predict the subsequent flow failure of the upstream slope. The relationships for the yield and liquefied ratios are presented, and their application to existing or new structures is illustrated using the Lower San Fernando Dam case history.