Location
St. Louis, Missouri
Presentation Date
06 Apr 1995, 9:00 am - 10:00 am
Abstract
This paper presents information about subsurface conditions, liquefaction-induced ground movements, and lifeline performance during the 1906 and 1989 earthquakes in San Francisco. Three sites of soil liquefaction and pipeline damage during both earthquakes are evaluated, including the Marina, South of Market, and Mission Creek areas. Important lessons are summarized about the effects of transient lateral shear strains on pipeline performance, post liquefaction consolidation, use of submerged fill thickness as a microzonation technique for predicting liquefaction severity and potential pipeline damage, the relationship between surface manifestations of liquefaction and subsurface geometry of deposits, and factors affecting the magnitude of lateral spread.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
3rd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics
Publisher
University of Missouri--Rolla
Document Version
Final Version
Rights
© 1995 University of Missouri--Rolla, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
O'Rourke, T. D. and Pease, J. W., "Lessons Learned from Liquefaction and Lifeline Performance During San Francisco Earthquakes" (1995). International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 7.
https://scholarsmine.mst.edu/icrageesd/03icrageesd/session16/7
Included in
Lessons Learned from Liquefaction and Lifeline Performance During San Francisco Earthquakes
St. Louis, Missouri
This paper presents information about subsurface conditions, liquefaction-induced ground movements, and lifeline performance during the 1906 and 1989 earthquakes in San Francisco. Three sites of soil liquefaction and pipeline damage during both earthquakes are evaluated, including the Marina, South of Market, and Mission Creek areas. Important lessons are summarized about the effects of transient lateral shear strains on pipeline performance, post liquefaction consolidation, use of submerged fill thickness as a microzonation technique for predicting liquefaction severity and potential pipeline damage, the relationship between surface manifestations of liquefaction and subsurface geometry of deposits, and factors affecting the magnitude of lateral spread.