Location

St. Louis, Missouri

Presentation Date

05 Apr 1995, 1:30 pm - 3:30 pm

Abstract

We use synthetic calculations to investigate the spectral ratio between horizontal and vertical components (H/V ratio), derived from noise simulation, in order to appreciate the reliability of the so-called Nakamura's method for site effects applications. This ratio shows a peak whose position generally coincides with the fundamental resonance frequency. We show that this position is independent of the source function, whereas it is characteristic of the geological structure. We also compare these results with those obtained for vertical S waves and Rayleigh waves, in order to better understand the significance of this HIV peak. Finally, we show that the amplitude of the H/V ratio cannot be used directly to derive the amplification for body waves, as suggested by Nakamura (1989), since it is very sensitive to parameters such as the Poisson's ratio and the source-receiver distance.

Department(s)

Civil, Architectural and Environmental Engineering

Meeting Name

3rd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics

Publisher

University of Missouri--Rolla

Document Version

Final Version

Rights

© 1995 University of Missouri--Rolla, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Document Type

Article - Conference proceedings

File Type

text

Language

English

Share

COinS
 
Apr 2nd, 12:00 AM Apr 7th, 12:00 AM

Theoretical Investigations on the Nakamura's Technique

St. Louis, Missouri

We use synthetic calculations to investigate the spectral ratio between horizontal and vertical components (H/V ratio), derived from noise simulation, in order to appreciate the reliability of the so-called Nakamura's method for site effects applications. This ratio shows a peak whose position generally coincides with the fundamental resonance frequency. We show that this position is independent of the source function, whereas it is characteristic of the geological structure. We also compare these results with those obtained for vertical S waves and Rayleigh waves, in order to better understand the significance of this HIV peak. Finally, we show that the amplitude of the H/V ratio cannot be used directly to derive the amplification for body waves, as suggested by Nakamura (1989), since it is very sensitive to parameters such as the Poisson's ratio and the source-receiver distance.