Location
St. Louis, Missouri
Presentation Date
04 Apr 1995, 2:30 pm - 3:30 pm
Abstract
The results from several dynamic centrifuge experiments are presented in this paper; the experiments were performed as part of a study to assess the influence of local site conditions on earthquake ground motions. Medium dense dry sand and saturated soft clay models were subjected to the accelerogram recorded at Santa Cruz during the 1989 Loma Prieta Earthquake. Scaled versions of the input motion were used to shake the soil models; in addition, different time steps were used in order to study the effects of frequency content of the input motion. The results confirm that the characteristics of the input motion and the soil model combine to have important effects on soil response. This fact must be recognized when selecting input motions for physical model tests.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
3rd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics
Publisher
University of Missouri--Rolla
Document Version
Final Version
Rights
© 1995 University of Missouri--Rolla, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Fiegel, Gregg L.; ldriss, I. M.; and Kutter, Bruce L., "Earthquake Input Motions for Physical Model Tests" (1995). International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 4.
https://scholarsmine.mst.edu/icrageesd/03icrageesd/session02/4
Included in
Earthquake Input Motions for Physical Model Tests
St. Louis, Missouri
The results from several dynamic centrifuge experiments are presented in this paper; the experiments were performed as part of a study to assess the influence of local site conditions on earthquake ground motions. Medium dense dry sand and saturated soft clay models were subjected to the accelerogram recorded at Santa Cruz during the 1989 Loma Prieta Earthquake. Scaled versions of the input motion were used to shake the soil models; in addition, different time steps were used in order to study the effects of frequency content of the input motion. The results confirm that the characteristics of the input motion and the soil model combine to have important effects on soil response. This fact must be recognized when selecting input motions for physical model tests.