Location
St. Louis, Missouri
Presentation Date
04 Apr 1995, 10:30 am - 12:00 pm
Abstract
The influence of fines on the liquefaction potential of sandy soils has been studied by conducting isotropically consolidated stress controlled triaxial tests. Experimental results are compared with predictions using the theory developed by Nasser and Shokooh which is based on energy considerations. The theory determines the excess pore water pressure in terms of the number of cycles N, the dimensionless shear stress amplitude, and the initial and minimum values of the void ratio. The comparisons show good agreement between experimental data and model predictions for the pore water generation under cyclic loading for both loose and medium sands and medium silty soils.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
3rd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics
Publisher
University of Missouri--Rolla
Document Version
Final Version
Rights
© 1995 University of Missouri--Rolla, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Erten, D. and Maher, M. H., "Effect of Fines Content on the Cyclic Undrained Behavior of Sand" (1995). International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 28.
https://scholarsmine.mst.edu/icrageesd/03icrageesd/session01/28
Included in
Effect of Fines Content on the Cyclic Undrained Behavior of Sand
St. Louis, Missouri
The influence of fines on the liquefaction potential of sandy soils has been studied by conducting isotropically consolidated stress controlled triaxial tests. Experimental results are compared with predictions using the theory developed by Nasser and Shokooh which is based on energy considerations. The theory determines the excess pore water pressure in terms of the number of cycles N, the dimensionless shear stress amplitude, and the initial and minimum values of the void ratio. The comparisons show good agreement between experimental data and model predictions for the pore water generation under cyclic loading for both loose and medium sands and medium silty soils.