Location
St. Louis, Missouri
Presentation Date
14 Mar 1991, 10:30 am - 12:30 pm
Abstract
A simplified method is presented for evaluating liquefaction potential of sand deposits using shear wave velocity. Effectiveness of the proposed method is evaluated through field tests at 17 sites in Niigata city where field performance during the 1964 Niigata earthquake is known. A modified version of steady state Rayleigh wave method is used in which the amplitude ratio between vertical and horizontal ground surface motions can be measured in addition to the phase velocity. Based on the measured phase velocity vs. wavelength relationship, shear wave velocity profile is determined using an inverse analysis. The liquefaction potential of each site is then evaluated using the shear wave velocity. The estimated results are reasonably consistent with the actual field behavior during the earthquake, indicating that the proposed method is effective.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics
Publisher
University of Missouri--Rolla
Document Version
Final Version
Rights
© 1991 University of Missouri--Rolla, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Tokimatsu, Kohji; Tamura, Shuji; and Kuwayama, Shinichi, "Liquefaction Potential Evaluation Based on Rayleigh Wave Investigation and Its Comparison with Field Behavior" (1991). International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 34.
https://scholarsmine.mst.edu/icrageesd/02icrageesd/session03/34
Included in
Liquefaction Potential Evaluation Based on Rayleigh Wave Investigation and Its Comparison with Field Behavior
St. Louis, Missouri
A simplified method is presented for evaluating liquefaction potential of sand deposits using shear wave velocity. Effectiveness of the proposed method is evaluated through field tests at 17 sites in Niigata city where field performance during the 1964 Niigata earthquake is known. A modified version of steady state Rayleigh wave method is used in which the amplitude ratio between vertical and horizontal ground surface motions can be measured in addition to the phase velocity. Based on the measured phase velocity vs. wavelength relationship, shear wave velocity profile is determined using an inverse analysis. The liquefaction potential of each site is then evaluated using the shear wave velocity. The estimated results are reasonably consistent with the actual field behavior during the earthquake, indicating that the proposed method is effective.