Session 01: Case Histories of Unexpected Behavior and Failure of Shallow, Deep and Other Foundations
Location
Arlington, Virginia
Date
13 Aug 2008, 5:15pm - 6:45pm
Abstract
Soil-structure interaction (SSI) effects when evaluating seismic response of deep bridge foundations to earthquake loading are complex and sometimes intriguing. The main factors in soil-structure interaction considerations that govern the seismic design of deep bridge foundations include interactive inertial forces, soil-pile kinematic forces in particular in liquefied sands or strain-softened clays due to seismic shaking, and the loss of soil support to the piles due to soil liquefaction. To evaluate these three key effects for the design of bridge foundations in seismic regions, soil-structure interaction analyses are normally required. Such analyses become more complex when soils supporting the bridge foundations are liquefiable and the effects of soil liquefaction need to be considered. Soil-structure interaction effects are routinely considered in seismic design, however, the way of incorporating the effects of soil liquefaction can be different depending on the project specific seismic design requirements and performance criteria. This paper explores how soil-structure interaction analyses have been incorporated into the design of three bridges in the seismically active Greater Vancouver area.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
6th Conference of the International Conference on Case Histories in Geotechnical Engineering
Publisher
Missouri University of Science and Technology
Document Version
Final Version
Rights
© 2008 Missouri University of Science and Technology, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Yang, Dan; Naesgaard, Ernest; and Byrne, Peter M., "Soil-Structure Interaction Considerations in Seismic Design for Deep Bridge Foundations" (2008). International Conference on Case Histories in Geotechnical Engineering. 29.
https://scholarsmine.mst.edu/icchge/6icchge/session_01/29
Soil-Structure Interaction Considerations in Seismic Design for Deep Bridge Foundations
Arlington, Virginia
Soil-structure interaction (SSI) effects when evaluating seismic response of deep bridge foundations to earthquake loading are complex and sometimes intriguing. The main factors in soil-structure interaction considerations that govern the seismic design of deep bridge foundations include interactive inertial forces, soil-pile kinematic forces in particular in liquefied sands or strain-softened clays due to seismic shaking, and the loss of soil support to the piles due to soil liquefaction. To evaluate these three key effects for the design of bridge foundations in seismic regions, soil-structure interaction analyses are normally required. Such analyses become more complex when soils supporting the bridge foundations are liquefiable and the effects of soil liquefaction need to be considered. Soil-structure interaction effects are routinely considered in seismic design, however, the way of incorporating the effects of soil liquefaction can be different depending on the project specific seismic design requirements and performance criteria. This paper explores how soil-structure interaction analyses have been incorporated into the design of three bridges in the seismically active Greater Vancouver area.