Session 01: Case Histories of Unexpected Behavior and Failure of Shallow, Deep and Other Foundations
Location
Arlington, Virginia
Date
13 Aug 2008, 5:15pm - 6:45pm
Abstract
The paper describes an approach for qualifying soil-structure systems behavior, using simple numeric models – “geotoys”, reflecting the main features of the systems behavior and enabling numeric simulation of various case histories. Three case histories of major karstic sinkholes are analyzed to show that man-made structures above a karstic cavity prevent formation sinkhole. When plastic zones reach the structure periphery, the soil-structure system becomes unstable. Prior settlements could be negligible to serve as precursors. Another soil-footing-superstructure (SFSS) model is a 2D geotoy - an exact mathematical solution, used for multiple simulations (about 10,000) of SFSS sensitivity i.e., response to input parameters variations. The sensitivity was rated for each input-output pair [1]. The most interesting findings are the following: 1) SFSS stress state is very sensitive to soil strength parameters c and φ, which are responsible for formation of soil disruption zones (‘plastic zone’) under footing edges. 2) If a structure rests on a homogeneous soil base then it is practically insensitive to soil base compressibility i.e., soil modulus E variations. 3) 3D FEM analysis confirmed that 2D simulations can be used for qualitative SFSS analysis. 4) Geotoys can be used for case histories analysis, risk assessment, training practical intuition, education purposes and international exchange and cooperation.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
6th Conference of the International Conference on Case Histories in Geotechnical Engineering
Publisher
Missouri University of Science and Technology
Document Version
Final Version
Rights
© 2008 Missouri University of Science and Technology, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Barvashov, V. A.; Kharlamov, P. V.; Naidenov, A. I.; and Rytov, S. A., "Application of Simplified Models to Qualitative Geotechnical Analysis" (2008). International Conference on Case Histories in Geotechnical Engineering. 2.
https://scholarsmine.mst.edu/icchge/6icchge/session_01/2
Application of Simplified Models to Qualitative Geotechnical Analysis
Arlington, Virginia
The paper describes an approach for qualifying soil-structure systems behavior, using simple numeric models – “geotoys”, reflecting the main features of the systems behavior and enabling numeric simulation of various case histories. Three case histories of major karstic sinkholes are analyzed to show that man-made structures above a karstic cavity prevent formation sinkhole. When plastic zones reach the structure periphery, the soil-structure system becomes unstable. Prior settlements could be negligible to serve as precursors. Another soil-footing-superstructure (SFSS) model is a 2D geotoy - an exact mathematical solution, used for multiple simulations (about 10,000) of SFSS sensitivity i.e., response to input parameters variations. The sensitivity was rated for each input-output pair [1]. The most interesting findings are the following: 1) SFSS stress state is very sensitive to soil strength parameters c and φ, which are responsible for formation of soil disruption zones (‘plastic zone’) under footing edges. 2) If a structure rests on a homogeneous soil base then it is practically insensitive to soil base compressibility i.e., soil modulus E variations. 3) 3D FEM analysis confirmed that 2D simulations can be used for qualitative SFSS analysis. 4) Geotoys can be used for case histories analysis, risk assessment, training practical intuition, education purposes and international exchange and cooperation.