Location

Arlington, Virginia

Date

14 Aug 2008, 4:30pm - 6:00pm

Abstract

Hydraulic fracturing can occur in the clay core of earth and rockfill dams if the vertical effective stress in the core is reduced to the levels that are small enough to allow a tensile fracture to occur due to hydraulic pressure of the seeping water. This situation may arise if the total stress in the core is reduced by the “arching effect” where the core settles relative to the filter or rock-fill shell of the dam. Water pressure increase in the core which occurs on first impounding of water, may reduce effective stresses further, and if they reach low enough values, a fracture will occur. The design of earth dams (especially those with thin vertical central cores) to resist hydraulic fracture is therefore of great importance, as there have been several dam failures in the past that have been attributed to the hydraulic fracture. In this paper, the behavior of Hyttejuvet Dam, which was thought to have failed due to hydraulic fracturing, is studied. 2D coupled consolidation finite element analysis of the construction and first impounding of the rockfill dam was carried out with elasto-plastic model (Drucker-Preger/Cap model) using ABAQUS software. The result of the analysis with respect to the pore pressure and settlement in some parts of the dam are compared with the measured data from the instruments in the dam. According to the result of the comparison, the appropriate model for predicting the behavior of Hyttejuvet Dam is obtained. Also different criteria are used to predict the hydraulic fracturing of the dam. By comparing the results of the study using these criteria, one may be able to predict the hydraulic fracturing mechanism in the clay core of the studied dam.

Department(s)

Civil, Architectural and Environmental Engineering

Meeting Name

6th Conference of the International Conference on Case Histories in Geotechnical Engineering

Publisher

Missouri University of Science and Technology

Document Version

Final Version

Rights

© 2008 Missouri University of Science and Technology, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Document Type

Article - Conference proceedings

File Type

text

Language

English

Share

 
COinS
 
Aug 11th, 12:00 AM Aug 16th, 12:00 AM

Predicting Hydraulic Fracturing in Hyttejuvet Dam

Arlington, Virginia

Hydraulic fracturing can occur in the clay core of earth and rockfill dams if the vertical effective stress in the core is reduced to the levels that are small enough to allow a tensile fracture to occur due to hydraulic pressure of the seeping water. This situation may arise if the total stress in the core is reduced by the “arching effect” where the core settles relative to the filter or rock-fill shell of the dam. Water pressure increase in the core which occurs on first impounding of water, may reduce effective stresses further, and if they reach low enough values, a fracture will occur. The design of earth dams (especially those with thin vertical central cores) to resist hydraulic fracture is therefore of great importance, as there have been several dam failures in the past that have been attributed to the hydraulic fracture. In this paper, the behavior of Hyttejuvet Dam, which was thought to have failed due to hydraulic fracturing, is studied. 2D coupled consolidation finite element analysis of the construction and first impounding of the rockfill dam was carried out with elasto-plastic model (Drucker-Preger/Cap model) using ABAQUS software. The result of the analysis with respect to the pore pressure and settlement in some parts of the dam are compared with the measured data from the instruments in the dam. According to the result of the comparison, the appropriate model for predicting the behavior of Hyttejuvet Dam is obtained. Also different criteria are used to predict the hydraulic fracturing of the dam. By comparing the results of the study using these criteria, one may be able to predict the hydraulic fracturing mechanism in the clay core of the studied dam.