Location

New York, New York

Date

16 Apr 2004, 1:30pm - 3:30pm

Keywords and Phrases

MR dampers, MR fluids, Base Isolation devices, ER Dampers

Abstract

Over the past three decades, a great deal of interest has been generated regarding the use of structural protective systems to mitigate the effects of dynamic environmental hazards, such as earth quakes and strong wind, on Civil Engineering structures. These systems usually employ supplemental damping devices to increase the energy dissipation capability of the protected structure. One of the most promising new devices proposed for structural protection is Magneto rheological (MR) fluid dampers because of their mechanical simplicity, high dynamic range, low pressure requirements, large force capacity and robustness, this class of devices has been shown to mesh well within application demands and constraints to offer an attractive means of protecting Civil infrastructure systems against dynamic loading. The focus of the paper is to develop a fundamental understanding of large scale MR dampers for the purpose of designing and implementing these “smart” damping devices in large- scale structures for natural hazard mitigation.

Department(s)

Civil, Architectural and Environmental Engineering

Meeting Name

5th Conference of the International Conference on Case Histories in Geotechnical Engineering

Publisher

University of Missouri--Rolla

Document Version

Final Version

Rights

© 2004 University of Missouri--Rolla, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Document Type

Article - Conference proceedings

File Type

text

Language

English

Share

 
COinS
 
Apr 13th, 12:00 AM Apr 17th, 12:00 AM

Magneto Rheological Dampers — A New Paradigm in Base Isolation Techniques in Earth Quake Engineering

New York, New York

Over the past three decades, a great deal of interest has been generated regarding the use of structural protective systems to mitigate the effects of dynamic environmental hazards, such as earth quakes and strong wind, on Civil Engineering structures. These systems usually employ supplemental damping devices to increase the energy dissipation capability of the protected structure. One of the most promising new devices proposed for structural protection is Magneto rheological (MR) fluid dampers because of their mechanical simplicity, high dynamic range, low pressure requirements, large force capacity and robustness, this class of devices has been shown to mesh well within application demands and constraints to offer an attractive means of protecting Civil infrastructure systems against dynamic loading. The focus of the paper is to develop a fundamental understanding of large scale MR dampers for the purpose of designing and implementing these “smart” damping devices in large- scale structures for natural hazard mitigation.