Location
New York, New York
Date
17 Apr 2004, 10:30am - 12:30pm
Abstract
The shear wave velocity of soil and rock is one of the key components in establishing the design esponse spectra, and therefore the seismic design forces, for a building, bridge, or other structure. The shear wave velocity can be measured from in-situ field tests, such as cross-hole or downhole testing. The shear wave velocity can also be estimated based on empirical correlations with other field collected information. This paper presents case histories from 8 bridge projects performed in the northeastern United States where in-situ measurements of shear wave velocities were performed for site-specific ground motion studies. A comparison of these measurements with several empirical correlations indicates that the empirical correlations do not approximate the shear wave velocity very well. Therefore, the use of the empirically derived shear wave velocities may result in an inaccurate determination of the seismic forces imparted to the soils and the structure. Therefore, based on these results, it is concluded that the use of empirically derived shear wave velocities should be used as a preliminary assessment for development of response spectra and liquefaction susceptibility parameters.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
5th Conference of the International Conference on Case Histories in Geotechnical Engineering
Publisher
University of Missouri--Rolla
Document Version
Final Version
Rights
© 2004 University of Missouri--Rolla, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Thomann, Thomas G. and Chowdhury, Khaled, "Shear Wave Velocity and Its Effect on Seismic Design Forces and Liquefaction Assessment" (2004). International Conference on Case Histories in Geotechnical Engineering. 2.
https://scholarsmine.mst.edu/icchge/5icchge/session03/2
Shear Wave Velocity and Its Effect on Seismic Design Forces and Liquefaction Assessment
New York, New York
The shear wave velocity of soil and rock is one of the key components in establishing the design esponse spectra, and therefore the seismic design forces, for a building, bridge, or other structure. The shear wave velocity can be measured from in-situ field tests, such as cross-hole or downhole testing. The shear wave velocity can also be estimated based on empirical correlations with other field collected information. This paper presents case histories from 8 bridge projects performed in the northeastern United States where in-situ measurements of shear wave velocities were performed for site-specific ground motion studies. A comparison of these measurements with several empirical correlations indicates that the empirical correlations do not approximate the shear wave velocity very well. Therefore, the use of the empirically derived shear wave velocities may result in an inaccurate determination of the seismic forces imparted to the soils and the structure. Therefore, based on these results, it is concluded that the use of empirically derived shear wave velocities should be used as a preliminary assessment for development of response spectra and liquefaction susceptibility parameters.