Location

New York, New York

Date

15 Apr 2004, 1:00pm - 2:45pm

Abstract

The Thissavros hydropower and pumped storage project on the Nestos river in northern Greece involved construction of a 172 m high rockfill dam and an underground power house with 300 MW installed capacity. Bedrock at the site consists of gneiss with complex geological structure and complicated hydrogeological conditions. On the right abutment, the dam partially rests on a large landslide and the toe of another large landslide extends into the plunge pool from the left bank. Initial excavations activated the dormant slides. Unloading, buttressing and drainage successfully stabilized the landslides. Core material for the dam is a silty sand and required special precautions in design and construction. Starting with an extremely rapid reservoir filling the dam has performed highly satisfactorily. The power house had to be excavated in a relatively unfavorable geological orientation but application of structural discontinuity analysis avoided wedge failures.

Department(s)

Civil, Architectural and Environmental Engineering

Meeting Name

5th Conference of the International Conference on Case Histories in Geotechnical Engineering

Publisher

University of Missouri--Rolla

Document Version

Final Version

Rights

© 2004 University of Missouri--Rolla, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Document Type

Article - Conference proceedings

File Type

text

Language

English

Share

 
COinS
 
Apr 13th, 12:00 AM Apr 17th, 12:00 AM

Thissavros Hydropower Plant Managing Geotechnical Problems in the Construction

New York, New York

The Thissavros hydropower and pumped storage project on the Nestos river in northern Greece involved construction of a 172 m high rockfill dam and an underground power house with 300 MW installed capacity. Bedrock at the site consists of gneiss with complex geological structure and complicated hydrogeological conditions. On the right abutment, the dam partially rests on a large landslide and the toe of another large landslide extends into the plunge pool from the left bank. Initial excavations activated the dormant slides. Unloading, buttressing and drainage successfully stabilized the landslides. Core material for the dam is a silty sand and required special precautions in design and construction. Starting with an extremely rapid reservoir filling the dam has performed highly satisfactorily. The power house had to be excavated in a relatively unfavorable geological orientation but application of structural discontinuity analysis avoided wedge failures.