Location
New York, New York
Date
14 Apr 2004, 4:30 pm - 6:30 pm
Abstract
The skin friction of pile is found as a parameter of pile shaft displacement. It will not be a simple/constant values for each type of soil/weathered rock. Pile load test data shows skin friction grows to maximum strength at certain displacement and then reduces to residual strength. Due to this property, the main active skin friction zone is shifted downwards with the increase of load. From the shared ratio of total skin friction in pile bearing capacity, the share ratio of skin friction is found related with pile length. This means that for 30m long pile, the skin friction share is approx.95% of bearing capacity. The shared ratio shows almost constant value for each pile under 100% ~ 300% of design load if there is no failure in the pile. From this point of view, the failure of pile bearing mechanism will be due to the change of skin friction share ratio.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
5th Conference of the International Conference on Case Histories in Geotechnical Engineering
Publisher
University of Missouri--Rolla
Document Version
Final Version
Rights
© 2004 University of Missouri--Rolla, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Wada, Akira, "Skin Friction and Pile Design" (2004). International Conference on Case Histories in Geotechnical Engineering. 14.
https://scholarsmine.mst.edu/icchge/5icchge/session01/14
Skin Friction and Pile Design
New York, New York
The skin friction of pile is found as a parameter of pile shaft displacement. It will not be a simple/constant values for each type of soil/weathered rock. Pile load test data shows skin friction grows to maximum strength at certain displacement and then reduces to residual strength. Due to this property, the main active skin friction zone is shifted downwards with the increase of load. From the shared ratio of total skin friction in pile bearing capacity, the share ratio of skin friction is found related with pile length. This means that for 30m long pile, the skin friction share is approx.95% of bearing capacity. The shared ratio shows almost constant value for each pile under 100% ~ 300% of design load if there is no failure in the pile. From this point of view, the failure of pile bearing mechanism will be due to the change of skin friction share ratio.