Date
02 Jun 1988, 10:30 am - 3:00 pm
Abstract
Big Lagoon, located 30 miles north of Eureka, California is formed behind a bay barrier built across the mouth of a drowned river valley. To the south of the bay the beach follows rising wave cut slightly cemented sand and gravel sea cliffs and terminates at the south end of Agate Beach. The retreat of these sea cliffs and its effect on property development along the top of the cliff is the focus of the paper. Measurements of bluff retreat in this area have been documented extensively from November 1941 to March 1986 through ground surveys and air photos. Review of the data indicates that the retreat rate is not constant along the cliff but has either been decreasing or remaining the same over the last 45 years. Using information on the rate of retreat, a method is developed to predict the cliff erosion in the future.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
2nd Conference of the International Conference on Case Histories in Geotechnical Engineering
Publisher
University of Missouri--Rolla
Document Version
Final Version
Rights
© 1988 University of Missouri--Rolla, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Chaney, R. C. and Tuttle, D. C., "Coastal Bluff Retreat at Big Lagoon, California" (1988). International Conference on Case Histories in Geotechnical Engineering. 7.
https://scholarsmine.mst.edu/icchge/2icchge/2icchge-session3/7
Coastal Bluff Retreat at Big Lagoon, California
Big Lagoon, located 30 miles north of Eureka, California is formed behind a bay barrier built across the mouth of a drowned river valley. To the south of the bay the beach follows rising wave cut slightly cemented sand and gravel sea cliffs and terminates at the south end of Agate Beach. The retreat of these sea cliffs and its effect on property development along the top of the cliff is the focus of the paper. Measurements of bluff retreat in this area have been documented extensively from November 1941 to March 1986 through ground surveys and air photos. Review of the data indicates that the retreat rate is not constant along the cliff but has either been decreasing or remaining the same over the last 45 years. Using information on the rate of retreat, a method is developed to predict the cliff erosion in the future.