Abstract
The paper presents a transmission-constrained unit commitment method using a Lagrangian relaxation approach. The transmission constraints are modeled as linear constraints based on a DC power flow model. The transmission constraints, as well as the demand and spinning reserve constraints, are relaxed by attaching Lagrange multipliers. The authors take a new approach in the algorithmic scheme. A three-phase algorithm is devised including dual optimization, a feasibility phase and unit decommitment. A test problem involving more than 2500 transmission lines and 2200 buses is tested along with other test problems
Recommended Citation
C. Tseng et al., "A Transmission-Constrained Unit Commitment Method," Proceedings of the 31st Hawaii International Conference on System Sciences, 1998, Institute of Electrical and Electronics Engineers (IEEE), Jan 1998.
The definitive version is available at https://doi.org/10.1109/HICSS.1998.656046
Meeting Name
31st Hawaii International Conference on System Sciences, 1998
Department(s)
Engineering Management and Systems Engineering
Keywords and Phrases
DC Power Flow Model; Lagrange Multipliers; Lagrangian Relaxation Approach; Buses; Demand Constraints; Dual Optimization; Economic Dispatch; Economics; Feasibility Phase; Integer Programming; Linear Constraints; Load Dispatching; Power System Analysis Computing; Power System Planning; Power Transmission Lines; Relaxation Theory; Scheduling; Spinning Reserve Constraints; Three-Phase Algorithm; Transmission Constraints; Transmission Lines; Transmission-Constrained Unit Commitment Method; Unit Decommitment
Document Type
Article - Conference proceedings
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 1998 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
01 Jan 1998