ART Properties of Interest in Engineering Applications

Abstract

This paper briefly summarizes some valuable properties of ART architectures that are advantageous in engineering applications, and outlines some areas of likely future progress, together with their motivations. Some of ART's advantages, such as its stability, biological plausibility, and responsiveness to the stability-plasticity dilemma, are well-described in the literature. This paper's focus will be on the advantages of scalability, speed, configurability, potential for parallelization, and ability to interpret the results. A valuable new area of innovation will be the application of ART to more generalized data structures such as trees and grammars. Continued progress on distributed representations would be valuable because of increased data representation capability, both in terms of system capacity and template complexity. Another valuable area of progress would be removal of the dichotomy between match-based and error-based learning.

Meeting Name

2009 International Joint Conference on Neural Networks, IJCNN 2009 (2009: Jun. 14-19, Atlanta, GA)

Department(s)

Electrical and Computer Engineering

International Standard Book Number (ISBN)

978-1424435531

Document Type

Article - Conference proceedings

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2009 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.

Publication Date

01 Jan 2009

Share

 
COinS