Abstract

Edge states in topological photonic systems have the robust unidirectional propagation feature which originates from the topological nature of the bulk band dispersion. In this work, we propose a topological photonic crystal (PC) waveguide that is formed by introducing an air gap in an all-dielectric PC with C-{6v} symmetry. The dispersion of the line defect states is tunable by varying the width of the air gap. Based on their field distributions, the states can be classified into even- and odd-symmetric states. The even-symmetric states are found to be the nontrivial topological edge states and exhibit pseudospin-locking unidirectional propagation property. By introducing disorders to the waveguide, these states are proven to be robust with well suppressed backscattering.

Department(s)

Electrical and Computer Engineering

Comments

National Natural Science Foundation of China, Grant FA2386-17-1-0010

Keywords and Phrases

robust wave-guiding; topological photonics; tunable edge states

International Standard Book Number (ISBN)

978-173350961-9

Document Type

Article - Conference proceedings

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2024 Institute of Electrical and Electronics Engineers, All rights reserved.

Publication Date

28 Jul 2021

Share

 
COinS