Consideration of Cyber-Physical Interdependencies in Reliability Modeling of Smart Grids
Abstract
A smart grid is a cyber-physical system designed to achieve sustainability by facilitating the use of renewable energy sources, without compromising the reliability of power distribution and transmission. The research presented in this paper seeks to facilitate analysis of the reliability achieved by smart grids. To this end, we present an analytical reliability model that captures the effect of impairments originating from both physical and cyber components, as well as the effect of cyber-physical interdependencies among these components. The model can be instantiated with failure data from field use or simulation. We categorize and quantify dependencies in the smart grid and analyze the impact on reliability of introducing additional interdependencies. Finally, we present a case study that investigates the effect of physical and cyber improvements on overall reliability of the smart grid, and demonstrate that flawed cyber infrastructure can result in reliability lower than that of a conventional power grid with less advanced control.
Recommended Citation
K. Marashi et al., "Consideration of Cyber-Physical Interdependencies in Reliability Modeling of Smart Grids," IEEE Transactions on Sustainable Computing, vol. 3, no. 2, pp. 73 - 83, Institute of Electrical and Electronics Engineers (IEEE), Apr 2018.
The definitive version is available at https://doi.org/10.1109/TSUSC.2017.2757911
Department(s)
Electrical and Computer Engineering
Research Center/Lab(s)
Intelligent Systems Center
International Standard Serial Number (ISSN)
2377-3782
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2018 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
01 Apr 2018